The Minimal Number of Generators of Wreath Products of Nilpotent Groups

نویسندگان

  • K. BUZASI
  • L. G. KOVACS
  • Samuil Davidovie Berman
  • L. G. KOVÀCS
چکیده

Under the stronger assumption that B is either finite or abelian, this was proved by Yeo Kok Chye [7]. I n the simplest case not covered by his work, B has a cyclic subgroup o f finite index, and the problem can be translated to one concerning representations of such B over finite prime fields. During the last years of his life, S. D. Berman made substantial contributions to the representation theory of (not necessarily nilpotent) groups which have cyclic subgroups o f finite index. H e and the first author o f this paper repeatedly discussed the possibility that their results could be applied in the context of wreath products. Indeed, the results which are used in the proof below and which are more recent than Yeo Kok Chye [7] come from Berman and Buzdsi [2]. We do not know whether the theorem remains valid if one omits the condition that B i be finite. F o r example, let p and q be distinct primes, A a group of order p, and B the group defined by the presentation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bound for the Nilpotency Class of a Lie Algebra

In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.

متن کامل

On minimal degrees of faithful quasi-permutation representations of nilpotent groups

By a quasi-permutation matrix, we mean a square non-singular matrix over the complex field with non-negative integral trace....

متن کامل

(c,1,...,1) Polynilpotent Multiplier of some Nilpotent Products of Groups

In this paper we determine the structure of (c,1,...,1) polynilpotent multiplier of certain class of groups. The method is based on the characterizing an explicit structure for the Baer invariant of a free nilpotent group with respect to the variety of polynilpotent groups of class row (c,1,...,1).

متن کامل

The Geometry of Twisted Conjugacy Classes in Wreath Products

We give a geometric proof based on recent work of Eskin, Fisher and Whyte that the lamplighter group Ln has infinitely many twisted conjugacy classes for any automorphism φ only when n is divisible by 2 or 3, originally proved by Gonçalves and Wong. We determine when the wreath product G o Z has this same property for several classes of finite groups G, including symmetric groups and some nilpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011